Assured performance, reliability and support

The BiOM T2 ankle uses tablet-based software to customize tuning and gait normalization for each patient. This provides documentation of K3 mobility. A BiOM Clinical Specialist will train and support you for the best fitting experience for your patients.

The BiOM T2 ankle is for people with above or below the knee amputations who are low to moderately active and want to maintain an active lifestyle.

The BiOM T2 ankle has a 3 year warranty.

Ask about BiOM reimbursement support for pre-authorizations, appeals and other reimbursement needs.

BiOM is committed to offering bionic solutions that restore normalized function and quality of life for people with amputations. More than 1,000 people have experienced the power of BiOM Personal Bionics.

Give your patients the opportunity to experience BiOM Personal Bionics.

Schedule their Bionic Experience with your Sales Associate today.

The device is intended to replace a missing foot and ankle. The BiOM T2 ankle is to be used exclusively for fittings of lower extremity amputations as prescribed by a healthcare professional.

The BiOM T2 ankle does not work for everyone and individual results may vary. The most common complications are complete battery discharge which may reduce walking distance and speed, improper tuning or improper walking up and down stairs which increases the risk of falls.

The Only Prosthesis with Powered Propulsion for Enhanced Mobility

The Power of BiOM Personal Bionics:

- Helps your patients walk faster and farther
- Reduces joint forces and potential for osteoarthritis (OA)
- Enables safety and stability on variable terrain
- Provides powered propulsion to climb ramps, hills and stairs

2. Abbie E. Ferris, MS; Jennifer E. Aldridge, MS; Jordan T. Sturdy, BS; Jason M. Wilken, PhD MPT. “Evaluation of the Biomimetic Properties of a New Posseggi ankle-foot Prosthetic System” Dept. of Orthopedics and Rehabilitation, Center for the Intrepid, Brooke Army Medical Center, Fort Sam Houston, TX, USA
4. Jennifer M. Aldridge, Abbie E. Ferris, Jordan T. Sturdy and Jason M. Wilken PhD MPT “Kinematics and Kinetics with a Powered Lower Leg System During Stair Climbing Ascent Following Transtibial Amputation”, Department of Orthopedics and Rehabilitation, Center for the Intrepid, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
The Challenge
Whether you’re seeing new or existing patients, you are challenged with improving mobility. This requires careful selection of a prosthesis to help patients:

• Walk farther and faster
• Minimize joint pain
• Be safer and more stable on variable surfaces
• Climb ramps, hills and stairs more easily

This high performing prosthesis must also have assured reliability and best-in-class support from a company committed to the long term success of your practice and your patients.

Increased walking distance and speed
The BiOM T2 ankle is the only prosthesis with powered propulsion for enhanced mobility. With each step, utilizing its Personal Bionics technology, the BiOM T2 ankle delivers powered propulsion to lift and drive the patient forward, smoothly transitioning weight to the active limb. The BiOM T2 ankle conserves metabolic energy to reduce fatigue.\(^1\)\(^,\)\(^7\) In clinical studies, patients on the BiOM T2 ankle increased their walking speed an average 23%.\(^1\)

When compared to energy store and return prostheses in Stair Climb Tests, the BiOM T2 ankle produced a 167% increase in ankle push-off.\(^4\) There was no significant power difference between the BiOM T2 ankle and the non-amputee control group. Achieving normal ankle function requires a substantial increase in power, only available with the BiOM T2 ankle.\(^4\)

Improved safety and stability on variable terrain
The natural ankle decelerates the body at heel-strike to control rollover, before re-powering for push-off. The BiOM T2 ankle uses dynamic resistance to replicate this deceleration which improves control and stability on any terrain.\(^3\) At the same time, the BiOM T2 ankle automatically adjusts the degree of plantar flexion to the angle of the ground below.

“Before, with my traditional prosthesis, every little thing I had to do was planned and evaluated. Do I try to walk up those stairs? Do I walk in that store? Now, I don’t have to worry about anything like that. I have better balance. I feel more stable. Now, I just walk.”
-Steve Tomten, Indiana

Reduced joint forces and potential of OA
People with lower limb amputations suffer a higher incidence of osteoarthritis due to gait deviation caused by conventional prostheses.\(^5\) A prosthesis that seems effective at first may soon cause joint pain that leads to OA. The BiOM T2 ankle mimics normal ankle motion and provides positive push off power, which can normalize the gait and reduce the adduction moment, considered the root cause of OA. Wearing the BiOM T2 ankle daily may help delay its onset.\(^1\)\(^,\)\(^2\)\(^,\)\(^6\)

“\(I\) do a lot of walking on all kinds of surfaces and terrains. I also do a lot of stairs. When I wore my other devices, I would go upstairs one at a time. I’d put both feet on one step and pull myself up. With the BiOM ankle, I can walk upstairs and not touch the handrail. Just walk up just like a normal person on the balls of their feet.”
-Shawn Brooks, Indiana

Easier climbing ramps, hills and stairs
Ramps, hills and stairs are difficult for people in prostheses. They use their hips, residual limb and healthy side to provide power. They often feel unstable and unsafe.

With the BiOM T2 ankle, powered propulsion drives the patient forward and upward while balancing weight transfer. No other prosthesis attempts to do this. The BiOM T2 ankle replaces the power generated by the gastrocnemius and soleus muscles.